Путь России – вперёд, к социализму! | На повестке дня человечества — социализм | Программа КПРФ

Вернуться   Форум сторонников КПРФ : KPRF.ORG : Политический форум : Выборы в России > История России > Исторические имена России

Исторические имена России Известные и не известные, созидатели и разрушители России

Ответ
 
Опции темы
Старый 07.03.2021, 09:17   #181
Гость1
Местный
 
Регистрация: 13.12.2007
Сообщений: 24,850
Репутация: 2359
По умолчанию

Цитата:
Сообщение от А.Лексей Посмотреть сообщение
В этом году он уверял нас, что вавиловская коллекция семян никому не нужна.
Читайте внимательно мои сообщения и не врите. И в этом и в прошлые годы, говоря о великом ученом Н.И. Вавилове, которого сгноили в тюрьме известные товарищи, я, не раз, упоминал об огромной ценности собранной Вавиловым по всему миру коллекции дикорастущих предков культурных растений. Ещё раз изволю вам посоветовать не врать в стиле бреда сивой кобылы.

Последний раз редактировалось Гость1; 07.03.2021 в 09:41.
Гость1 вне форума   Ответить с цитированием
Старый 07.03.2021, 10:20   #182
jra
Местный
 
Регистрация: 05.08.2012
Сообщений: 31,459
Репутация: 263
По умолчанию Шпионаж из Норвегии

Сейчас гены такое же оружие, как в 1941 танки.
Недавно норвежца задержали за попытку вывоза генов Россиийских студенток.
Образцы волос.
Поэтому - поэтому весьма подозрительна история с вывозом всей или части коллекции Вавилова.
Одно ясно, эта операция проводилась тайно, без оповещения научной общественности, да и просто населения.
Документы не опубликованы.
ФСБ как бы ничего не заметила.
На Данном Форуме была информационная поддержка вывоза коллекции.
Один из участник - сталинист, это не Гость 1, пытался убедить в не нужности коллекции.
Есть что-то зловещее.
Отправляют семена в банк Норвегии, норвежца задерживают за вывоз генов из России.
Привожу довольно путанное описание ситуации в СМИ
https://nevnov.ru/548153-proverka-sl...-dollarov-ssha
Кстати Норвегия активно участвует в разведывательных операциях НАТО с использованием популярного браузера "Огненный лис".

Последний раз редактировалось jra; 07.03.2021 в 10:27.
jra вне форума   Ответить с цитированием
Старый 07.03.2021, 14:42   #183
А.Лексей
Местный
 
Аватар для А.Лексей
 
Регистрация: 09.03.2007
Адрес: Урал
Сообщений: 25,315
Репутация: 2569
По умолчанию

Ну ладно, ладно, Гость1, раскипятился.

"Ошибочка вышла. Дело государственное, ошибочки всегда возможны"
(А. и Б. Стругацкие)
__________________
Разум есть способность из Хаоса сделать Космос. (А.В.Г., 1991-1994)
А.Лексей вне форума   Ответить с цитированием
Старый 08.03.2021, 18:40   #184
А.Лексей
Местный
 
Аватар для А.Лексей
 
Регистрация: 09.03.2007
Адрес: Урал
Сообщений: 25,315
Репутация: 2569
По умолчанию Краткая история томографии

'''Компьютерная томография''' — за рубежом считают, что метод был предложен в 1972 г [[Хаунсфилд, Годфри|Годфри Хаунсфилдом]] и [[Кормак, Аллан|Алланом Кормаком]], удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями.


Термины "вычислительная томография", "компьютерная томография" и "реконструктивная томография" эквивалентны. Но не всякая томография является вычислительной. Например, врач Бокаж изобрёл в начале 20-го в. то, что впоследствии получило название "классическая [[томография]]", сущность которой состояла в том, что за счёт специальной схемы механического движения неразмытым на рентенограмме оставался лишь один заданный слой человеческого тела.


В действительности же вычислительную (computing) томографию впервые изобрёл и осуществил в начале ХХ в. голландский астроном Я. Ван-Циттерт, по интегралам вдоль линий сечения профиля изображения близкой звезды и её короны рассчитав распределение яркости звезды по радиусу (обратное преобразование Абеля). Но это был лишь одномерный (f(R)) объект. В конце 30-х - начале 40-х гг. советский математик А.Н. Тихонов изобрёл [[метод регуляризации]], позволивший по конечному набору проекций (теней) вычислительно восстанавливать трёхмерное распределение внутри объекта. Метод Тихонова был применён в годы [[Великой Отечественной войны]] для решения задач технической дефектоскопии в машиностроении. В 1952 г. советский математик Вайнштейн доказал теорему, с помощью которой однозначно устанавливается зависимость наименьшего количества направления проекций (см. преобразование Радона), достаточных для однозначного точного восстановления многомерногот объекта (см. обратное преобразование Радона), от его группы симметрии. Эта теорема была применена в СССР в те же годы для упрощения решения задач вычислительной реконструкции 2-мерных и 3-мерных объектов сложной формы в технике и биологии (вирусологии) по набору его проекций (теней), полученных с помощью Х-излучения (см. В.К. Рентген) и СВЧ- и СБММ- электромагнитного излучения (см. интроскопия Ощепкова). В 1960 г. В.А. Иванов подал заявку на изобретение ЯМР-томографии и ЯМР-томографа и там же указал способ расчёта двух- и трёхмерного изображения объекта по его одномерным проекциям и впоследствии получил на это патент СССР.


'''Компьютерная томография''' (КТ) — в широком смысле, синоним термина ''[[томография]]'' (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина ''рентгеновская компьютерная томография'', так как именно этот метод положил начало современной томографии.


'''Рентгеновская компьютерная томография''' — [[томография|томографический]] метод исследования внутренних органов [[человек]]а с использованием рентгеновского излучения.

== Томографические алгоритмы ==

Со времён Абеля, Радона, Вайнштейна применялись алгоритмы аналитического обратного преобразования. Математической особенностью этих задач является то, что они принадлежат классу [[некорректно по Адамару поставленных]] задач, как правило, родственным интегральным [[уравнениям Фредгольма]]. Эффективным средством их решения при конечном числе проекций является метод регуляризации академика А.Н. Тихонова, развитый впоследствии Филлипсом, Арсениным, Ягломом, Тананой и многими др.


Для осесимметричных систем применяют обратное преобразование Абеля. Его дискретная версия была применена Ван-Циттертом.
Для систем с 2-мя разделяющимися переменными применяют преобразование Агравала и Содха.
Для систем с известной группой симметрии теорема Вайнштейна указывает наименьшее число проекций, достаточных для точной реконструкции системы.


С 40-х гг. (Тихонов и др.) томографические задачи для 2- и 3-мерных объектов поддаются решению численными методами.
Численная дискретная модель системы сводится, в конечном итоге, как правило, к особенной (недоопределённую либо, напротив, переопределённой и несоместной) системе линейных уравнений большого размера, причём с размерностью от 3-х и 4-х (для 2-мерной томографии) до 5- и 6-мерной (для 3-мерной томографии). В экспериментальной ядерной физике и физике пучков заряженных частиц известна 4-мерная томография (Sandia, Broockhaiwen, CERN, ОИЯИ, Исследовательский центр им. М.В. Келдыша, МФТИ и др.).


Таким образом, решение таких систем классическими "точными" методами ([[Гаусса-Жордана]] и т.п.) нереально вследствие кубически больших вычислительных затрат (что доказано [[теоремой Клюева--Коковкина-Щербака]]).


Для их решения применяют 3 класса алгоритмов.


Класс 1. Безытерационное обратное преобразование разложения проекций по ортогональным функциям (Фурье, Чебышёва, Хартли, Уолша, Радемахера и др.).


Класс 2. [[Регуляризация по Тихонову]] (или без неё до заранее оцененного [[предела сверхразрешения Косарева]]) в сочетании с итерационными [[методами многомерного поиска]] - спуска, Монте-Карло и др.


Класс 3. [[Регуляризация по Тихонову]] (или без неё до заранее оцененного [[предела сверхразрешения Косарева]]) в сочетании с итерационными проекционными алгоритмами. Все проекционные алгоритмы базируются на теореме математика Банаха (г. Львов) о сжимающих отображениях. Важным их достоинством является гарантированная и устойчивая сходимость итераций. Ещё более важным их достоинством для многомерной томографии является радикально более низкая вычислительная трудоёмкость - квадратичная.


Первые технические и биологические вычислительные интроскопы-томографы в СССР (40-е - 50-е гг.) и первые медицинские вычислительные томографы в США (70-е гг.) фактически использовали ряд версий метода польского математика [[Качмажа]] (1937 г.), в т.ч. советского математика [[И.А. Бочека]] (1953 г., [[МФТИ]]). Так, награждённые Нобелевской премией американцы Кормак и Хаунсфилд использованный ими алгоритм Качмажа (обеспечивающий достижение точки наименьших квадратов) называли ART (1973 г.), алгоритм советского математика [[Тараско]] (обеспечивающий достижение точки максимума правдоподобия, 60-е гг., ФЭИ, г.Обнинск) они назвали MART, также они использовали алгоритм японского математика [[Куино Танабе]] (1972 г.), являющийся релаксационной и сверхрелаксационной версией алгоритма Качмажа. Часто используется алгоритм Фридена (обеспечивающий достижение точки максимума энтропии). Стохастические методы перебора уравнений в проекциях (первым из таких была стохастическая версия алгоритма И.А. Бочека, опубликованная в 1971 г.) позволяют избежать регулярных артефактов и значительно улучшить качество изображения.


Если для схем сканирования "тонкими лучами" система уравнений сравнительно хорошо обусловлена (следовательно, результат реконструкции мало чувствителен к неизбежным погрешностям измерений проекций), то для сканирования "толстыми лучами" (что характерно для задач [[ЯМР-томографии]], [[УЗИ]], [[ПЭТ]], [[интроскопии Ощепкова]], [[электротоковой томографии]], система уравнений оказывается очень плохо обусловленной. Это приводит к резкому замедлению приближения итераций вышеупомянутых проекционных методов к решению. Для решения таких систем используют методы [[А.В. Горшкова]] ([[МФТИ]]) и [[С. Елсакова]] ([[ЮУрГУ]]), отличающиеся нечувствительностью к плохой обусловленности решаемых систем уравнений, а также, за счёт необходимого стохастического перебора уравнений в них, отсутствием регулярных артефактов, и, наконец, сксоростью сходимости (в практических задачах) на 2-3 порядка большей, чем указанные ранее.


Для нелинейных уравнений и томографии большой размерности (3-, 4-мерной) эффективным методом решения являются варианты [[метода Монте-Карло]] в метрических пространствах большой размерности.


Алгоритм советского математика [[А.А. Абрамова]] [[МФТИ]] одновременной итерации к решению и ортогонализации обеспечивает гарантию устойчивой сходимости к решению и заодно весьма точную оценку погрешности реконструкции. Укажем, что в плохо обусловленных системах в качестве его элементарных итераций рекомендуются не итерации Качмажа-Бочека, Тараско или Фридена (все они первого порядка), а итерации Горшкова-Елсакова (они 2-го порядка) или (в случае необходимости) итерации 3-го или большего порядков.


Заметим, что не следует без необходимости использовать итерации слишком высоких порядков, т.к. вычислительные затраты на них при неограниченном увеличении порядка итерации стремятся к кубическим (как у прямого обращения Гаусса-Жордана).


Для решения вычислительных задач синфазных УЗ-, СВЧ-, СБММ- и электропотенциальной томографии используют алгоритм академика [[Лаврентьева]].

== Предпосылки метода в истории медицины ==

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения [[анатомия|анатомии]]. В частности, [[Пирогов, Николай Иванович|Николай Иванович Пирогов]] разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название ''топографической анатомии''. Сутью метода было изучение замороженных трупов, послойно разрезанных в различных [[Анатомическая терминология|анатомических плоскостях]] («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования.

В начале ХХ века Бокаж изобрёл способ томографии на механическом сканере, обеспечивающем линейное либо вращательное размытие на рентгенограмме всех слоёв тела человека, кроме заданного. Томография Бокажа ("классическая") применялась (наряду с вычислительной) до конца ХХ в.

Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая прижизненную диагностику заболеваний; возможность аппаратной реконструкции однократно полученных изображений в различных анатомических плоскостях (проекциях), а также [[Трёхмерная графика|трёхмерной]] реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые [[физиология|физиологические]] характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.
__________________
Разум есть способность из Хаоса сделать Космос. (А.В.Г., 1991-1994)
А.Лексей вне форума   Ответить с цитированием
Старый 08.03.2021, 18:42   #185
А.Лексей
Местный
 
Аватар для А.Лексей
 
Регистрация: 09.03.2007
Адрес: Урал
Сообщений: 25,315
Репутация: 2569
По умолчанию

Разное интересное
== До ХХ в. Математики Фредгольм и Абель исследуют свойства семейства интегральных уравнений, позже ставших основой томографии.
= 1895 г. В.К. Рентген открывает проникающие "Х-лучи", позже названные благодарными физиками и врачами его именем - "рентгеновские".
=В 1905 г. Я. Ван-Циттерт осуществил томографическое измерение распределение яркости далёкой звезды по радиусу как численное обратное преобразование Абеля.
=В 1917 году австрийский математик Иоганн Радон предложил способ обращения интегрального преобразования, впоследствии получившего его имя (см. преобразование Радона), благодаря которому стало возможно восстанавливать изначальную функцию, зная её преобразование. Однако в то время работа Радона не попала в поле зрения исследователей и вскоре была незаслуженно забыта современниками.
=В 20-х гг. ХХ в. французский врач Бокаж изобрёл и запатентовал томографический механический сканер, который должен был оставлять на рентгенограмме неразмытым только заданный слой тела пациента. Это называлось "рентгеновская планиграфия", а также "биотомия", а позже было названо "классическая томография".
=В 1930 г. А. Валлебона, как сообщают, "разработал принцип послойного рентгенологического исследования (томографии)".
=В 1934 г. В.И. Феоктистов создал первый действующий рентгеновский томограф.
=В 1937 г. польский математик Качмаж опубликовал алгоритм, который впоследствии был использован Кормаком и Хаунсфилдом без сcылки на автора.
=В 1937 г. И. Раби открыл новое явление - ядерный магнитный резонанс (ЯМР) в изолированном ядре.
=В 1938 г. А. Ощепков изобрёл СВЧ-интроскопию.
=В 1941 г. А.Н. Тихонов изобрёл метод регуляризации, сделавший возможным реконструкцию при неточных проекциях.
=1941-1945 гг. Рентгеновские, гамма- и нейтронные интроскопы с вычислительной томографической обработкой по Тихонову осуществлены в СССР для задач дефектоскопии в авиационной и пушечной отраслях промышленности, а к концу войны - и для контроля объёмного распределения процессов в ядерных реакторах.
=В 1944 г. Е.К. Завойский открыл новое явление - электронный парамагнитный резонанс (ЭПР).
=В 1946 г. Ф. Блох и Э.Парселл повторили открытие И. Раби в конденсированных средах.
=В 1953 г. И.А. Бочек изобрёл стохастическую версию алгоритма Качмажа, избавившую реконструкции от регулярных артефактов и значительно увеличивший качество изображений.
=В 1953 г. советский математик Вайнштейн доказал теорему о связи минимального достаточного количества проекций с группой симметрии объекта, резко упростившую томографию.
=В 1960 г. В.А. Иванов изобрёл ЯМР-томографию (внутривидение на основе ядерного магнитного резонанса).
=В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы EMI Ltd. сконструировал «ЭМИ-сканер» (EMI-scanner) — первый зарубежный компьютерный рентгеновский томограф, чьи клинические испытания прошли в 1972 году. В 1979 году Кормак и Хаунсфилд «за разработку компьютерной томографии» были удостоены Нобелевской премии по физиологии и медицине.
=А в 2003 за изобретение метода магнитно-резонансной томографии, на основе открытия Реймонда Дамадьяна, Нобелевскую премию по физиологии и медицине получили Питер Мэнсфилд и Пол Лотербур.
__________________
Разум есть способность из Хаоса сделать Космос. (А.В.Г., 1991-1994)
А.Лексей вне форума   Ответить с цитированием
Старый 08.03.2021, 18:44   #186
А.Лексей
Местный
 
Аватар для А.Лексей
 
Регистрация: 09.03.2007
Адрес: Урал
Сообщений: 25,315
Репутация: 2569
По умолчанию

Известны несколько тысяч алгоритмов, применяемых для задач вычислительной (реконструктивной) томографии. Их можно объединить в несколько больших основных групп.

Со времён Абеля, Радона, Вайнштейна применялись алгоритмы аналитического обратного преобразования. Математической особенностью этих задач является то, что они принадлежат классу некорректно по Адамару поставленных задач, как правило, родственных интегральным уравнениям Фредгольма. Эффективным средством их решения при конечном числе проекций является метод регуляризации академика А.Н. Тихонова, развитый впоследствии Филлипсом, Арсениным, Ягломом, Тананой и многими др.

Для осесимметричных систем применяют непосредственно обратное преобразование Абеля. Его дискретная версия впервые была применена Ван-Циттертом для задачи разрешения сверх предела Рэлея. Для 2-мерных систем, описываемых 2-мя разделяющимися переменными, применяют элементарное преобразование Агравала и Содха. Для систем с известной группой симметрии теорема Вайнштейна указывает наименьшее число проекций, достаточных для точной реконструкции системы.

С 40-х гг. (Тихонов и др.) томографические задачи для 2- и 3-мерных объектов поддаются решению численными методами. Численная дискретная модель системы интегральных уравнений сводится, в конечном итоге, как правило, к особенной (недоопределённой либо, напротив, переопределённой и несоместной) системе линейных уравнений большого размера, причём с размерностью от 3-х и 4-х (для 2-мерной томографии) до 5- и 6-мерной (для 3-мерной томографии). В экспериментальной ядерной физике и физике пучков заряженных частиц известна 4-мерная томография (Sandia Nat.Lab., Broockhaiwen Nat.Lab., CERN, Исследовательский центр им. М.В. Келдыша, МФТИ и др.).

Таким образом, решение таких систем классическими "точными" методами (Гаусса-Жордана и т.п.) нереально вследствие кубически по числу элементов объекта =N**M, где N - характерный линейный размер объекта, M - размерность, больших вычислительных затрат (что доказано теоремой Клюева--Коковкина-Щербака). Например, для 2-мерных задач порядка 100х100 потребуется порядка 1 трлн. операций с накоплением погрешностей округления, а для 3-мерных 100х100х100 - порядка 10**18 операций, что соответствует времени порядка 1 часа счёта на рекордных современных в мире многопетафлопных супер-ЭВМ. Итак, класс 1 вычислительно неудовлетворителен.

Для их решения применяют 3 иных класса алгоритмов.

Класс 2. Безытерационное обратное преобразование разложения проекций по ортогональным функциям (Фурье, Чебышёва, Котельникова, Хартли, Уолша, Радемахера и др.).

Класс 3. Регуляризация по Тихонову (или без неё до заранее оцененного предела сверхразрешения Косарева) в сочетании с итерационными методами многомерного поиска - спуска, Монте-Карло и др.

Класс 4. Регуляризация по Тихонову (или без неё до заранее оцененного предела сверхразрешения Косарева) в сочетании с итерационными проекционными алгоритмами. Все проекционные алгоритмы базируются на теореме математика Банаха (г. Львов) о сжимающих отображениях. Важным их достоинством является гарантированная и устойчивая сходимость итераций. Ещё более важным их достоинством для многомерной томографии является радикально более низкая вычислительная трудоёмкость - квадратичная по N**M. Для вышеуказанных параметров объекта в 2-мерном случае это пропорционально 100 млн. операций и числу итераций, т.е. порядка 1 часа счёта на рядовой современной ПЭВМ (для итераций первого порядка) и порядка 1 сек. для итераций второго порядка. В 3-мерном случае (100х100х100) это пропорционально 1 трлн. операций и числу итераций, т.е. порядка 1 сек. (если первого порядка) или порядка 1 миллисекунды (если второго порядка) на супер-ЭВМ.

Первые технические и биологические вычислительные интроскопы-томографы в СССР (40-е - 50-е гг.) и первые медицинские вычислительные томографы в США (70-е гг.) фактически использовали ряд версий метода польского математика Качмажа (1937 г.), в т.ч. советского математика И.А. Бочека (1953 г., МФТИ). Так, награждённые Нобелевской премией Кормак и Хаунсфилд использованный ими алгоритм Качмажа (обеспечивающий достижение точки наименьших квадратов) называли ART (1973 г.), алгоритм советского математика Тараско (обеспечивающий достижение точки максимума правдоподобия, 60-е гг., ФЭИ, г.Обнинск) они назвали MART, также они использовали алгоритм японского математика Куино Танабе (1972 г.), являющийся релаксационной и сверхрелаксационной версией алгоритма Качмажа. Часто используется алгоритм Фридена (обеспечивающий достижение точки максимума энтропии). Стохастические методы перебора уравнений в проекциях (первым из таких была стохастическая версия алгоритма И.А. Бочека, опубликованная в 1971 г.) позволяют избежать регулярных артефактов и значительно улучшить качество изображения.

Если для схем сканирования "тонкими лучами" система уравнений сравнительно хорошо обусловлена (следовательно, результат реконструкции мало чувствителен к неизбежным погрешностям измерений проекций), то для сканирования "толстыми лучами" (что характерно для задач ЯМР-томографии, УЗИ, ПЭТ, СВЧ-интроскопии Ощепкова, электротоковой томографии, система уравнений оказывается очень плохо обусловленной. Это приводит к резкому замедлению приближения итераций вышеупомянутых проекционных методов к решению. Для решения таких систем используют методы А.В. Горшкова (МФТИ) и С. Елсакова (ЮУрГУ), отличающиеся нечувствительностью к плохой обусловленности решаемых систем уравнений, а также, за счёт необходимого стохастического перебора уравнений в них, отсутствием регулярных артефактов, и, наконец, скоростью сходимости (в практических задачах) на 2-3 порядка большей, чем указанные ранее.

Для нелинейных уравнений и томографии объектов большой размерности (3-мерной в медицине,науке и технике, 4-, 5-, 6-мерной в ядерной физике и физике плазмы и пучков заряженных частиц, в ускорительной технике) эффективным методом решения являются варианты метода Монте-Карло в метрических пространствах большой размерности.

Алгоритм советского и российского математика А.А. Абрамова (МФТИ) одновременных сжимающих итерации к решению и итерации к ортогонализации обеспечивает гарантию устойчивой сходимости к решению и заодно весьма точную оценку погрешности и скорости реконструкции. Укажем, что в плохо обусловленных системах в качестве его элементарных итераций рекомендуются не итерации первого порядка (Качмажа-Бочека, Тараско, Фридена и т.п.), а второго порядка (Горшкова, Елсакова и др.), или даже (в случае необходимости, пока не встреченной в практических задачах) итерации 3-го или большего порядков.

Заметим, что не следует без необходимости использовать итерации слишком высоких порядков, т.к. вычислительные затраты на них при неограниченном увеличении порядка итерации стремятся к кубическим (по N**M) (как у прямого обращения Гаусса-Жордана).

Для решения вычислительных задач синфазных УЗ-, СВЧ-, СБММ- и электропотенциальной томографии используют алгоритм академика Лаврентьева.

[http://www.lib.vsu.ru/elib/texts/met...u/sep06184.pdf Дьячкова С.Я., Николаевский В.А. Рентгеноконтрастные средства. - Воронеж, 2006.
Важенин А.В., Ваганов Н.В. Медицинско-физическое обеспечение лучевой терапии. - Челябинск, 2007.
Левин Г.Г., Вишняков Г.Н. Оптическая томография. – М.: Радио и связь, 1989. – 224 с.
Тихонов А.Н., Арсенин В.Я., Тимонов А.А. Математические задачи компьютерной томографии. – М.: Наука, Гл. ред. физ.-мат. лит., 1987. – 160 с.
Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. – М.: Наука, Гл. ред. физ.-мат. лит., 1990. – 232 с.
Наттерер Ф. Математические аспекты компьютерной томографии. – М.: Мир, 1990. – 288 с.
Васильев М.Н., Горшков А.В. Аппаратно-программный комплекс GEMMA и томографический метод измерения многомерных функций распределения в траекторном и фазовом пространствах при диагностике пучков заряженных частиц. // Приборы и техника эксперимента. - 1994. №5. - С.79-94. // Перевод на англ.: Instruments and Experimental Techniques. - V.37. №5. Part 1. 1994. -P.581-591.
Горшков А.В. Пакет программ REIMAGE для существенного улучшения разрешения изображений при обработке данных физического эксперимента и метод нахождения неизвестной аппаратной функции. 26.01.94. // Приборы и техника эксперимента. - 1995. №2. - С.68-78. // Перевод на англ.: Instruments and Experimental Techniques. - V.38. №2. 1995. - P.185-191.
Москалёв И.Н., Стефановский А.М. Диагностика плазмы с помощью открытых цилиндрических резонаторов. - М.: Энергоатомиздат, 1985.
Хермен Г. Восстановление изображений по проекциям: Основы реконструктивной томографии. – М.: Мир, 1983. – 352 с.
Горелова Л.Е. Нобелевская премия. Нобель, Мечников, Рентген. // Сайт ММА им. И.М. Сеченова.
__________________
Разум есть способность из Хаоса сделать Космос. (А.В.Г., 1991-1994)
А.Лексей вне форума   Ответить с цитированием
Старый 08.03.2021, 18:45   #187
А.Лексей
Местный
 
Аватар для А.Лексей
 
Регистрация: 09.03.2007
Адрес: Урал
Сообщений: 25,315
Репутация: 2569
По умолчанию

ЧТО ТАКОЕ НОБЕЛЕВСКАЯ ПРЕМИЯ и ДЛЯ ЧЕГО ЕЁ ДАЮТ

Цитата: http://www.rmj.ru/articles_1134.htm .
"В 1895 г., незадолго до смерти, изобретатель динамита Альфред Нобель (1833–1896) пишет свое знаменитое завещание, в котором говорится: «Все оставшееся после меня реализуемое имущество необходимо распределить следующим образом: капитал мой душеприказчики должны перевести в ценные бумаги, создав фонд, проценты с которого будут выдаваться в виде премии тем, кто в течение предшествующего года принес наибольшую пользу человечеству. Указанные проценты следует разделить на пять равных частей, которые предназначаются: первая часть тому, кто сделал наиболее важное открытие и изобретение в области физики, вторая – тому, кто совершил крупное открытие или усовершенствование в области химии, третья – тому, кто добился выдающихся успехов в области физиологии или медицины, четвертая – создавшему наиболее значительное литературное произведение, отражающее человеческие идеалы, пятая – тому, кто внесет весомый вклад в сплочение народов, уничтожение рабства, снижение численности существующих армий, в содействие мирной договоренности. Премии в области физики и химии должны присуждаться Шведской академией наук, по физиологии и медицине – Королевским Каролинским институтом в Стокгольме, по литературе – Шведской академией в Стокгольме, премия мира – Комитетом из пяти человек, избираемых норвежским Стортингом. Мое особое желание заключается в том, чтобы на присуждение премии не влияла национальность кандидата, чтобы премию получили наиболее достойные, независимо от того, скандинавы они или нет».
Основу богатства семьи Нобель составило владение крупными нефтяными компаниями. Принадлежало ей и предприятие в г. Баку. И это, и многое другое в жизни А. Нобеля было связано с Россией.
Вместе с братом он приехал сюда еще ребенком. Продолжив школьное образование в Петербурге, А. Нобель стал химиком и инженером, работал в городе на Неве у профессора Н.Н. Зинина. "

--------------

Через приблизительно 10 лет после изобретения динамита полковником Петрушевским Нобель тоже "изобрёл" динамит.

-------------

Ещё цитата оттуда же:

"К сожалению, ряд ограничений, предусмотренных уставом Нобелевского комитета, не позволил стать лауреатами некоторым российским ученым. По замыслу Альфреда Нобеля, его премии – поощрение работающих, перспективных ученых, а не своего рода пенсия для отошедших от активной деятельности. Поэтому, например, в 1906 г. из–за преклонного возраста была отклонена кандидатура Д.И. Менделеева.

По тому же уставу, при выборе лауреатов ориентируются на так называемый индекс цитирования: сколько раз за истекший год ссылались на ту или иную публикацию."

Поэтому если вы опубликовали свою работу на русском, на китайском, на сербскохорватском, или даже на английском, но без влиятельного соавтора, то индекс цитирования будет нулевым. Ваши изобретения и открытия будут использовать во всём мире, но нобелевку дадут тем, на кого чаще ссылались в последние годы ...

Например, на ... этого, как его ...

Некоторые даже считают, что воровская подачка это "фрайерам", а не достойная премия ... Зря они так считают. Некоторые нобелевские премии были выданы за действительные заслуги перед человечеством.

Но, с другой стороны, есть заслуги и есть "заслуги". Возьмём, например, такого нобелиата, как М.С. Горбатшьофф ... По уставу фонда Нобеля, это означает, что от него ожидают ПРОДОЛЖЕНИЯ той же деятельности ... В смысле, разрушения России.

Не пора ли признать Нобелевский фонд подрывной, экстремистской организацией?

... Каков был Нобель, таковы и премии.

Вместо заключения:

Для Нобелевских премий характерно то, что слишком уж часто за "изобретения" и "открытия" их дают совсем не действительным изобретателям и первооткрывателям ... А просто тем, кого чаще цитируют на западноевропейских языках ... Только и всего.

Короли pop-science ...
__________________
Разум есть способность из Хаоса сделать Космос. (А.В.Г., 1991-1994)
А.Лексей вне форума   Ответить с цитированием
Старый 13.03.2021, 14:36   #188
А.Лексей
Местный
 
Аватар для А.Лексей
 
Регистрация: 09.03.2007
Адрес: Урал
Сообщений: 25,315
Репутация: 2569
По умолчанию Полусухой закон Углова-Лигачёва (при Горби)

(От Эока)

К чему привёл полусухой закон 1985 -1987
--------------------------------------------------------------------------------------

1. Преступность сократилась на 70%.

2. Освободившиеся в психиатрических больницах койки были переданы для больных другими заболеваниями.

4. Увеличилось потребление молока населением.

5. Улучшилось благосостояние народа. Укрепились семейные устои.

6. Производительность труда в 1986-1987 годах повышалась ежегодно на 1%, что давало казне 9 миллиардов рублей.

7. Количество прогулов снизилось, в промышленности - на 36%, в строительстве - на 34% (одна минута прогула в масштабе страны обходилась в 4 миллиона рублей).

8. Возросли сбережения. В сберкассы внесено на 45 миллиардов рублей больше.

9. В бюджет за 1985-1990 годы денежных средств от реализации алкоголя поступило меньше на 39 миллиардов рублей. Но если учесть, что каждый рубль, полученный за алкоголь, несет 4-5 рублей убытка, сохранено было в стране не менее 150 миллиардов рублей.

10. Повысились нравственность и гигиена.

11. Уменьшилось число травм и катастроф, убытки от которых снизились на 250 миллионов рублей.

12. Почти исчезла гибель людей от острых отравлений алкоголем. (Если бы не закоренелые алкоголики, которые пили всё, то острых отравлений от алкоголя не было бы совсем)

13. Значительно снизилась общая смертность. Смертность населения в трудоспособном возрасте уменьшилась в 1987 году на 20%, а смертность мужчин этого же возраста на 37%.

14. Выросла средняя продолжительность жизни, особенно у мужчин: с 62,4 в 1984 году до 65 лет в 1986 году. Снизилась детская смертность.

15. Вместо прежнего унылого мрака в рабочих семьях появились: достаток, спокойствие и счастье.

16. Трудовые сбережения шли на обустройство квартир.
Покупки стали более целесообразными.

17. Ежегодно продавалось продуктов питания вместо наркотических ядов на 45 миллиардов рублей больше, чем до 1985 года.

18. Безалкогольных напитков и минеральных вод продавалось на 50% больше.

19. Резко уменьшилось число пожаров.

20. Женщины почувствовав уверенность в завтрашнем дне, начали рожать. В России в 1987 году количество родившихся детей было самым больших за последние 25 лет.

В 1985 -1987 годах умирало в год на 200 тысяч человек меньше, чем в 1984 году. В США, к примеру, такого снижения добились за семь лет.

--------------------------------------------------------

От себя добавлю, что интеграл прироста населения за эти годы сверх окружающей тенденции составляет около 1 млн.чел.
(А.Лексей)
__________________
Разум есть способность из Хаоса сделать Космос. (А.В.Г., 1991-1994)
А.Лексей вне форума   Ответить с цитированием
Старый 14.03.2021, 07:11   #189
Гость1
Местный
 
Регистрация: 13.12.2007
Сообщений: 24,850
Репутация: 2359
По умолчанию

Цитата:
Сообщение от А.Лексей Посмотреть сообщение
К чему привёл полусухой закон 1985 -1987
21. Доходы от продажи вино-водочных изделий перетекли в криминальную сферу теневой экономики.
22. Бюджет лишился миллиардных доходов, которые восполнялись печатным станком.
23. Рекордными темпами возросло самогоноварение и производство самодельных алкогольных суррогатов , типа браги.
Гость1 вне форума   Ответить с цитированием
Старый 14.03.2021, 11:01   #190
jra
Местный
 
Регистрация: 05.08.2012
Сообщений: 31,459
Репутация: 263
По умолчанию Гость 1 предлагает легализовать наркотики.

Цитата:
Сообщение от Гость1 Посмотреть сообщение
21. Доходы от продажи вино-водочных изделий перетекли в криминальную сферу теневой экономики.
22. Бюджет лишился миллиардных доходов, которые восполнялись печатным станком.
23. Рекордными темпами возросло самогоноварение и производство самодельных алкогольных суррогатов , типа браги.
Япоша шпион предлагает споить Россию.
Как и не строить мост на Сахалин.


Запрет наркотиков:
1. Доходы от наркотиков идут криминалу.
2. Бюджет лишается доходов от наркотиков.
3, Россия покрвта сетью лабораторий по производству наркотиков.
jra вне форума   Ответить с цитированием
Ответ


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
9-Е МАЯ - ДЕНЬ ПОБЕДЫ Владимир Шмелев Обсуждение статей из красного интернета 261 06.05.2021 12:45
День Победы в Литве Admin Международные новости 0 10.05.2009 21:51
С ДНЁМ ВЕЛИКОЙ ПОБЕДЫ! Христианский патриот Преимущества и недостатки СССР 0 09.05.2009 20:13
К Дню Победы Подскребышев Владимир Открытые письма, обращения и манифесты 1 30.04.2008 20:25
Знамя Победы Admin Обсуждение статей из красного интернета 4 23.04.2007 23:22


Текущее время: 23:39. Часовой пояс GMT +3.

Яндекс.Метрика
Powered by vBulletin® Version 3.8.7 Copyright ©2000 - 2024, vBulletin Solutions, Inc. Перевод: zCarot
2006-2023 © KPRF.ORG